Shor’s Algorithm, Bernstein-Vazirani, and
Deutsch-Jozsa Algorithm: A Deep Dive

Maria Harrson
CS 8395-51: Intro to Quantum Computing
Vanderbilt University
Nashville, TN
maria.harrison@vanderbilt.edu

Abstract—Quantum Fourier Transform is the tool behind
why quantum algorithms offer exponential speed ups compared
to its classical counterparts. serving as a quantum subroutine, it
transforms one quantum state into another; encoding the
frequency spectrum of the original state. The Quantum Fourier
Transform also plays a crucial role in Shor’s, Bernstein-Vazirani,
and Deutsch-Jozsa algorithm, as these three all use an oracle and
a quantum circuit. The purpose of this paper is to explore these
three algorithms and implement them in Python.

Keywords—hidden shift, integer factorization,
computing, modulus operator, quantum key distribution

quantum

I. INTRODUCTION

Quantum computers are machines that exploit the mechanics
of quantum physics to solve large-scale linear algebra
problems, that present challenges Classical computers are
incapable of solving. With the advancements of quantum
computing, there has been an increase interest in quantum
cryptography over the past few years, leading to numerous
discoveries including the various proposals for cryptographic
approaches based on quantum information; Quantum Key
Distribution(QKD) being the most prominent. Conversely,
the advancement of quantum computing poses a threat to
many classical cryptosystems, whose security is based on the
difficulty of solving theoretical problems efficiently, like large
prime factorization. Rivest-Shamir-Aldeman (RSA) is the
most widely used public-key cryptosystem today. RSA relies
on the

difficulty of factoring large prime integers in polynomial time
for its security. This process is computationally exhaustive to
break using a Classical computer, but is possible when using
a quantum computer. Shor’s algorithm is the most represented
example of a quantum algorithm that can efficiently solve the
difficult large prime integer factorization problem that many
public-key cryptosystems rely on security.

II. QuANTUM FOURIER TRANSFORM

A. Quantum Fourier Transform

Quantum fourier transform (QFT) is a unitary operator that
performs on the amplitude of a quantum state utilizing a
discrete fourier transform. At a high level, QFT works by

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

applying a series of Hadamard and Controlled Phase Shift
Quantum Gates to a register of qubits, simulating a shift of
basis states. Each qubit represents a binary digit on the input
state, and each quantum gate alters the qubits amplitude and
phase according to a specific formula. The result of applying
a QFT is a quantum state that has the same number of qubits
as the input state but its amplitude and phase correlate to a
coefficient of the Fourier series of input states.

QFT uses Z¢ gates and they act upon qubits as follows:

Z,|0) = |0)

L

v~ o

Although a |0) state qubit does not change states, for a given
positive number ¢, the Z¢ gate rotates the |1) state qubit
around the Z-axis at an angle of:

2mi[2¢

This can be further dissected by rotating |y) around the Z-axis
at an angle of:

i /29 J

Doing so applies Z¢ on |y) J times. The matrix for this now
is as seen below:

7 — |} 0
¥ 0 el2mi/2%)]
When N = 2n is the basis state, we can say that:

1T) = QFT|X)

1 N—1 31'ri.zE
T) =N 2y—0 & ¥)
A single qubit case of a QFT is as follows:

i~ 1 2wi(0)y
|D} = ﬁ y:ﬂ € = |y

= \,Lg Z;:D ly)

= 2:(0)+[1))

2wiflly

_ 1 (Ehgmlﬂ}-i-ezﬂgmll})

S

= 2(/0)-1))

The QFT plays an important role in quantum algorithms as
a subroutine, specifically Shor’s Algorithm because it only
needs n gates for the first qubit, n — 1 gates for the second,
and so on, which sums to:

n+n-1)+. +1=nn+ 1)/2

If you consider a N/2 SWAP gates implemented by 3x CNOT

gates, the quantum circuit still only has a runtime of O(nz),
which is still a significant speed up. QFT offers significant
speed up when used as a subroutine in quantum algorithms,
thus offering a more efficient solution to specific problems
compared to classical algorithms.

I11. SHOR’S ALGORITHM

In 1994, Peter Shor introduced a quantum algorithm that
efficiently solves the Integer Factorization problem, notably
referred to as Shor’s Algorithm. Shor’s discovery
demonstrated those (cryptosystems) whose security relies on
the difficulty of solving Integer Factorization or a Discrete
Log Problem, can be impotent with a quantum computer. As
quantum computing research furthers, it is prevalent to ensure
secure communica- tion between governments, businesses,
and individuals.

Shor’s algorithm does not allow for direct factoring of a
number, rather it reduces factoring to find the period of a
modular exponential function where:

N = p Xq where p, q are prime

Shor’s algorithm uses quantum computation when finding the
order of a modulo N, where N is an n-bit integer that we want
to factor. The order r of a module N is the least positive
integer such that:

a = 1(mod N).

A. Greatest Common Divisor

The Greatest Common Divisor (GCD), also called the Highest
Common Factor (HCF) is the largest natural number that
evenly divides into both numbers without a reminder.
Examples of GCD are as follows:

GCD(24, 36) = 12
GCD(1015, 23) = 7
GCD(15,22) = 11

The best way to calculate the GCD is using Euclid’s
Division Algorithm.

B. Modulus Operator

The modulus operator performs division on two numbers and
returns the remainder. Examples of the Modulus Operator are

as follows:
17 mod5 = 2

45 mod9 =0
101 mod?21 = 17

C. Algorithm

This is a step-by-step explanation of Shor’s Algorithm in
its entirety. Let N represent the number to be factored, using
the following example:

N = 15

1. Choose a random number A that satisfies: 1 <A <N,
so they are coprimes of each other.

- TI'vechosen A = 7 for this example
2. Calculate the GCD using Euclid’s Division Algorithm.

- Ifthe GCD of (N, A) = 1 proceed to the next step.

If N is the number to be factored, A represents the
random number chosen from the previous step, then:

GCD (N, a)
GCD (15, 7)

3. Using a quantum computer, find the smallest positive
integer r, such that if:

f(x) = a‘modN,
then:

fA) = f(4 + R)

- Define anew variable Q = 1
- Find (Q X A)modN. If the remainder is 1, proceed
to Step 4. If remainder is not 1, set q to the value of

the remainder of times the transformation is
performed.

q X amodN =[]
1 X 7mod 15 7
7 X 7mod15 = 4
4 X 7mod15 = 13
13 X 7mod 15 =1

We performed the transformation 4 times total. Let
R = 4

4. If R is an odd number, go back to Step 2 and choose
another value for A and repeat. If R is an even
number, continue to the next step.

5. Define P as the remainder in the (R/Z)th
transformation such that: p = remainder in (R/2)
transformation

- IftP+1=N
Return to Step 2 to choose a different value of K
- Else: Continue

When R = 4, P = 4 then the equation would be
(4/2),

the 2nd transformation: 4 + 1 = 5 is not equal to
N = 15

Proceed to next step
6. Find the factors of N. They are:
f1 = GCD(P + 1, N)

f, = GED(P — 1, N)

Finishing my example where:
N=15A4 =7, P =4
The factors of N are as followed:

f, = GCD(P + 1, N)
= GCD(4 + 1, 15)
= GCD(5, 15)
f,=5

f, = GCD(P — 1, N)
= GCD(4 — 1, 15)
= GCD(3, 15)
f,=3

Therefore 3,5 are factors of 15

IV. BERNSTEIN-VAZIRANI ALGORITHM

In 1992, Ethan Bernstein and Umesh Vazirani developed
an algorithm, commonly known as the Bernstein-Vazirani
algorithm, that solves a hidden shift problem. Utilizing quan-
tum mechanics’s superposition and entanglement properties,
the Bernstein-Vazirani algorithm efficiently identifies a
hidden, unknown binary string in one single run. In
comparison to classical algorithms, this provides significant
speed up times as it does not require n number of queries to be
made. Cryptographic keys vary in length, spanning from 128
to 256 bits, to 2046 bits. The runtime of classical algorithms
significantly limits its applications due to its minimum
runtime of n runs, for a string of n length. If a classical
algorithm was used to crack a cryptographic key of a 128 bit
size, the runtime would be a minimum of 128 runs, just to
fully traverse the key in its entirety. The Bernstein-Vazirani
algorithm poses a threat to cracking classical cryptographic
systems through cryptographic key-related attacks because of
its significant speedup from the usage of the oracle and
quantum circuit.

A. Hidden Shift Problem and Algorithm

The Hidden Shift problem states that when given a
function, there is a guarantee an undetermined shift exists. The
shift is an unknown bit string. The function is guaranteed to be
of type a X x and when given an input, the output will
always be of a X xmod(2) . When fis a given function of
bit strings, a is the phase shift, x is a string of n bits, n is the

length of said bit string X0 X0 Xy Xy X the algorithm

defines a function f(x)to determine the unknown n-bit string a
as followed:
f(x) = a x (mod2)

B. Inner Product Oracle

This algorithm uses a quantum oracle that applies a given
function to a superposition of all possible inputs of a quan-
tum state. Often referred to as the inner-product oracle, the
quantum oracle is an inner modulus function that receives
queries and applies a single-qubit unitary transformation. The
complexity of the Bernstein-Vazirani algorithm is in terms of
the number of queries to an oracle. The oracle has four core
tasks:

e Containing a random n-bit hidden bit string

Taking in two inputs, the Query and Auxiliary

e Calculating the inner product of the hidden bit string
and Query mod(2) without affecting the Query, and

sets the Auxiliary to the value
e Outputting the Query and Auxiliary output value

C. Quantum Circuit

Similar to Deutsch-Jozsa Algorithm, the Bernstein-Vazirani
Algorithm also uses a quantum circuit consisting of n qubits
and outputs each bit of the hidden string after measurements
are made. The usage of a quantum circuit solves the hidden

shift problem in one query, rather than running multiple
passes, at a minimum of n runs for a string of length n.

V. DEeuTscH-JozSA ALGORITHM

In 1992, David Deutsch and Richard Jozsa proposed an
algorithm known as the Deutsch-Jozsa Algorithm, solving a
problem that determines whether a function is balanced or
constant. The Deutsch-Jozsa Algorithm solves this problem
efficiently by making one query to the function on a quantum
computer; likewise solving this problem on a classical com-
puter requires evaluating the function at each possible input.
This problem is known as the Deutsch-Jozsa problem, and
solving for it on a classical computer requires a minimum of:

n
2+1

queries to the function. Determining whether a binary function
is constant or balanced can be used in cryptography when
assessing the strength of an encryption function.

A. Deutsch-Jozsa Problem

Given a function that takes n bit string as input and outputs
a truth value of one bit:

fix €{0, 1} -0, 1
The function is either constant:

vx € {0, 1}, f(x) = B

Vx € H, f(x) 0
Vx &€ H, f(x) 1
B. Constant and Balanced Functions on a Single Bit

or balanced:

TABLE I. FUNCTION ON A SINGLE BIT

Constant and Balanced Function

Function x f(x) Type
fx) =20 (1) g Constant
f) =1 (1) g Constant
f) =x (1) g Balanced
f() =xd1 ? 8 Balanced

Fig. 1. Constant and balanced function on a single bit

C. Algorithm
e Initialize the quantum state using registers. Register 1
holds n input bits and Register 2 holds a single output
bit. Both registers are set to 0.

|1ho)= [01)

e Apply a Hadamard gate to each input bit to create a
superposition of all possible input states.

- () (%)

e Apply a quantum oracle to the registers. The oracle
performs a unitary operator function on each bit and
sets the second qubit. This is factorized as:

. if f(0)=f(1)
_
|1P2}—{i |n}v72_|1} if f(0)# f(1)

e Apply a Hadamard gate to each input bit after the
Oracle to interfere with the superposition on the first
qubit. This returns them to the original base state.
Their results in:

w0 GTE) if F0) = f()
3:
+[1) (272) if £(0) # £(1)

|0)+]1}

[03—11)
V2

|03 —]1}
V2

e Measure the input bits and use their values to
determine whether the function is balanced or
constant

VI. IMPLEMENTING BERNSTEIN-VAZIRANI ALGORITHM

To further understand Bernstein-Vazirani’s algorithm, I
implemented it using quantum circuits, and used it to guess a
Fernet encryption key. My coding environment consisted of:

- Visual Studio Code as an IDE
- Python 3.11 language
- Qiskit, Numpy, Pyenv Python submodules

A. Setting Up for a Quantum Circuit

First I generated a random int, in decimal type, whose
binary format would be used as my hidden string.

Next, I generated a random int between 1, 39 which
represented the number of qubits for my circuit.

Then, I performed a modulus function on my hidden
string, checking to ensure that my randomly generated integer
would be able to be represented with the randomly generated
number of qubits.

When f is my inner product oracle function and

r is a randomly generated integer used for my hidden
string

n_qubits is a randomly generated integer for the number
of qubits my circuit will use

secret_num is the inner product from a modulus function
The hidden string, number of qubits for my quantum circuit is
as followed:

getRandomNumberHigh() :

format:", decimal_num)
bin{decimal_num).replace("®b", ""})

getRandomNumberQubits():
n_qub randint(1, 39)
print(

r = getRandomNumberHigh()
n_qubits = getRandomNumberQubits()

© 0.0s
Random number HIGH generated in decimal format: 864

Random number in BINARY format: 1101100008
Random number of qubits: 12

secret_num = r %2#ek(n_gubits)

0.0s

B. Creating Algorithm

When bernstein_vazirani_alg(r, n) is the algorithm
and

r is the hidden string in decimal format

n is the number of qubits for the quantum circuit

qr is a quantum register of sizen + 1

cr is a classical register of size n

bvCirq is a QuantumCircuit

. X is the output x gate

. h is the output h gate

if (f &1 << i)):is the inner product oracle

The newly created quantum circuit implementing
Bernstein-Vazirani’s algorithm is as followed:

vazirani_alg(r, n):

bvCirg.x(n)
bvCirg.hin)

bvCirg.h{qubit)

bvCirg.barrier()

bvCirg.z(gr[il)
bvCirg.id(gr[il)

bvCirg.barrier()

bvCirg.higrigl)

i in range(n):
bvCirg.measure(i, i)

rn bvCirq
o — -
o
o J—
oo
o
o, ——
e
o
o
o — i
oo @
qo,z_._n
o~ 'EE TUN FEN THE THE THN THE T2N THE THR PO BY

C. Creating Quantum Simulator and Executing Circuit

Next I created a quantum simulator and executed my
newly created quantum circuit, implemented with
Bernstein-Vazirani’s Algorithm.

simulator = Aer.get_backend('qa
shats = 108

result = execute(qCirc, backend=simulator, shots=shots).result()

plot_histogram(result.get_counts(qCirc))

D. Measuring and Testing Algorithm

Next I measured and tested my algorithm, and compared
the hidden string with the algorithm’s guess to determine
accuracy.

guess = t({result.get_counts().keys())
print{guess)

0.0s

['e01101100000"]

isGuessCorrect (secret_num, guess):

printOutputAndScore(r, guess, secret_num):

print (" om the ginning and
print (" secrat_num)

print ("

isGuessCorrect (secret_num, guess)

printOutputAndScore(r, guess, secret_num)
0.0s
Random number generated at the beginning and converted to secret string : 864
Secret string: 864
Guess: ['001101100000']
Yay, the guess was CORRECT!

VII. IMPLEMENTING DEUTSCH-JOZSA ALGORITHM

A. Creating an Oracle Function

In order to implement Deutsch-Jozsa, I first created an oracle
function. This oracle function accepts two parameters:
returnQGate: a binary flag of 1 or 0
1 returns a quantum gate function
0 returns a circuit that generates bitstrings
n: length of a bit string
In my oracle function, I first create a quantum circuit to return,
and set the input ton + 1 qubit size. In the case this function
returns a quantum gate, I first generate a random number to
know which CNOTs should be wrapped in X-gates. Then I
reformat the random number as a binary string and iterate
through the qubits (digits) of a binary string, finding a qubit
with a value of 1 and applying an X gate to it to activate it.
Then I iterate through the qubits to set my controlled NOT
gates, and set my leftover gates.

In the case this function returns a quantum circuit, I randomly
set the output value of a qubit with an X gate.

oracle(returnQGate, n):

quantumCircuit = QuantumCircuit(n + 1)

if returnQGate == (yariahle) randint: randint

b = np.r . randint {1, 24#n)

b_str = format(b, '®'+: nj+'b')

r qubit in e(len(b_str
if b_strlgubit] == '1':

quantumCircuit.x(qubit)

r qubit ir ge(n):
quantumCircuit.ex(qubit, n)

or qubit in (tr
if b_strlqubit] == '1':
quantumCircuit.x(qubit)

if returnQGate == @:

output = n m. randint (2)

if output £
guantumCircuit.x(n)

guantumGate = quantumCircuit.to_gate()
quantumGate. name ra

return quantumGate, quantumCircuit

0.0s

B. Setting Up for a Quantum Circuit

When deutsch_jozsa_alg(oracle, n) is the algorithm and
oracle: is a quantum circuit
n: is a length of a bit string
djCircuit: is a newly created quantum circuit

with a quantum register of n+1 bits

with a classical register of n bits
The newly created quantum circuit implementing
Deutsch-Jozsa is as followed:

deutsch_jozsa_alg(e, n):
djCircuit = Q uit(n+#1, n)

djCircuit.x(n)

djCircuit.h(n)

for qubit in range(n):
djCircuit.h(qubit)

djCircuit.append(oracle, range(

for qubit in range(n):
djCircuit.h(qubit)

for i in range(n):
djCircuit.measure(i, i)

return djCircuit

0.0s

C. Returning a Quantum Circuit . . . Lo
gagQ E. Creating Quantum Simulator and Executing Circuit or

To demonstrate my Oracle returning a circuit, I set the Gate
parameter returnQGate to 0 and call my oracle() function.

Next I created a quantum simulator and executed my
et oratearestt - oracteteetsrae 5. @ 5 newly created quantum circuit, implemented with the
djQCircuit = deutsch_jozsa_alg(oracleQGate, n = 5) Deutsch-Jozsa’s Algorithm.

djoCircuit.draw('mpl'}

0.3s

: Futurewarning: Thel

self._style, def_font_ratio = load_style(self._style)

D. Returning a Quantum Gate

To demonstrate my Oracle returning a quantum gate, I set
the parameter refurnQGate to 1 and call my oracle()
function.

5 uﬂ ul uZ u} u4

oracleqCircuit.draw('mpl')

0.0s

)
it, aer_sim)
d) . result()

get_counts ()
plot_histogran(answer)

00s

modular_exponentiation(given_circuit, n, m, a):
VIII. IMPLEMENTING SHOR’S ALGORITHM for i

x ir n):
. exponent kX,
A' Creatlng a Quantum Phase Estlmatlon Cerull given_circuit.append(quPhaseEstCircuit(a, exponent),

First I created a quantum phase estimation circuit in order to B3] &> L

find the period of a function for f(x) = a'mod 15. My QPE
function accepts a unitary operator and an eigenstate and
returns its phase. This is necessary for my quantum circuit oractela,n,m

later on. mCircuit{n+m, n)
I also created a helper function to do the modulus
exponentiation on my circuit (which will be used later).

B. Creating an Oracle Function

shor.h{rz

shor.x{n+m=1)
shor.barrier()

guPhaseEstCircuit({a, x):
[2,7,8,11,13]: modular_exponentiation(shor, n, m, a)
- shor.barrier()

shor.append(QFT(n, do_swaps= J.inverse(),

U.swap(@,1)
U.swap(1,2)
U.swap(2,3)

a [7.8]:
U.swap(2,3)
U.swap(1,2)
U.swap(8,1)

if a == 11:
U.swap(1,3)
U.swap(8,2)

if a [7,11,131:

) q, ;{q; C. Setting Up for a Quantum Circuit

U = U.to_gate() When shors(N, backend) is the algorithm and
e N: is the number to be factorized

IEgonteal () backend: is the quantum simulator
found factors: is a boolean flag to determine if a factor has
been found
n: is the binary size of N - 2
valid_a: is a list of valid numbers that meet the criteria

shor.measure(r

return shor

0.0s

n=4; m=4; a=2
shorsCircuit = oracle(a,n,m)
shorsCircuit.draw('mpl')

The newly created quantum circuit implementing Shor’s
algorithm is as followed:

backend = Aer.get_backend('qgasm_simulater')

shors(N=15, backend=backend):
found_factors =

n = len(bin(N))-2

m=n

valid_a = [2,7,8,11,13]

while found factors ==
(valid_a)==0:

a= choice(valid_a)
print(= {a}")

r=1

while asxrN != 1:
gc = oracle(a,n,m)

measure = execute(gc, backend=backend, shots=1,memory=). result
().get_memory() [8]

measure = int(measure,2)
phase = measure/(2sk(n-1))

r = Fraction(phase).limit_denominator(N}.denominator

(a%k(r/2)+1)%N!1=0:

if factors[e]
found_factors =
print(f" Suc fully found factors {factors}")
else:
print(f" ctors found: [1,15]")
if found_factors =

print(f* ={;

valid_a.remove(a)
shors()

Trying a = 11
-—— order r = 8
-— Trivial factors found: [1,15]

-—— a=11 failed!
Trying a = 8
-—— order r = 4
-— Sucessfully found factors [3; 5]

CONCLUSION
The Quantum Fourier Transform (QFT) serves as a pivotal
tool in quantum computing, enabling exponential speed-ups in
comparison to classical algorithms.It plays a fundamen-
tal role in algorithms such as Shor’s Algorithm, Bernstein-
Vazirani, and Deutsch-Josza, transforming quantum states into
encoded frequency spectra. These algorithms leverage the
QFT as a quantum subroutine, to achieve quantum advantages.
Shor’s Algorithm, for instance, efficiently solves the Integer

Factorization problem, crucial for cryptography. Shor’s
Algo-rithm highlights the potential threat quantum computing
poses on classical cryptographic systems. Similarly, the
Bernstein-Vazirani Algorithm efficiently identifies hidden
binary strings and the Deutsch-Jozsa Algorithm efficiently
distinguishes between constant and balanced functions. Both
algorithms are also applicable to cryptography, and are
essential for assessing encryption function strength. The
application of the QFT as a subroutine in these algorithms
highlights its significance in quantum computing, offering
efficient solutions for complex problems compared to classical
approaches.

REFERENCES

[10]

[11]

[12]

[13]

“A quantum related-key attack based on
Bernstein-Vazirani algorithm,” ar5iv. Accessed: Mar. 10,
2024. [Online]. Available:
https://arSiv.labs.arxiv.org/html/1808.03266

“Ansatze and Variational Forms | IBM Quantum
Learning.” Accessed: Mar. 09, 2024. [Online]. Available:
https://learning.quantum.ibm.com/course/variational-algo

“Bernstein-Vazirani Algorithm.docx,” Google Docs.
Accessed: Mar. 10, 2024. [Online]. Available:
https://docs.google.com/document/d/1w7GQ7gSDchPt0Y
igkvZE7YQmTkOr0X0-/edit?usp=drive web&ouid=104
716854945157424942 &rtpof=true&usp=embed_facebook
“Cryptographic hash functions | IBM Quantum Learning.”
Accessed: Mar. 10, 2024. [Online]. Available:
https://learning.quantum.ibm.com/course/practical-introd
uction-to-quantum-safe-cryptography/cryptographic-hash-
functions

S. Singh and E. Sakk, “Implementation and Analysis of
Shor’s Algorithm to Break RSA Cryptosystem Security,”
Preprints, preprint, Jan. 2024. doi:

1 22 hrxiv. 1702591 4 2.

R. Huang, X. Tan, and Q. Xu, “Learning to Learn
Variational Quantum Algorithm,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 34, no. 11,
pp. 8430-8440, Nov. 2023, doi:
10.1109/TNNLS.2022.3151127.

A. M. Childs, “Lecture Notes on Quantum Algorithms”.

J. Pipher, “Lectures on the NTRU encryption algorithm
and digital signature scheme: Grenoble, June 2002”.
“Musty Thoughts.” Accessed: Mar. 09, 2024. [Online].
Auvailable:
https://www.mustythoughts.com/variational-quantum-eige

nsolver-explain

“NIST Announces First Four Quantum-Resistant
Cryptographic Algorithms,” NIST, Jul. 2022, Accessed:
Mar. 10, 2024. [Online]. Available:
https://www.nist.gov/news-events/news/2022/07/nist-ann

ounces-first-four-quantum-resistant-cryptographic-algorit
hms

I. T. L. Computer Security Division, “Post-Quantum
Cryptography | CSRC | CSRC,” CSRC | NIST. Accessed:
Mar. 09, 2024. [Online]. Available:

hitps://csre.ni 0] -quantum-cr raph
I. T. L. Computer Security Division, “Post-Quantum
Cryptography Standardization - Post-Quantum
Cryptography | CSRC | CSRC,” CSRC | NIST. Accessed:
Mar. 10, 2024. [Online]. Available:
https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization

“Quantum computing is taking on its biggest challenge:
noise,” MIT Technology Review. Accessed: Mar. 09,
2024. [Online]. Available:
https://www.technologyreview.com/2024/01/04/1084783/
gquantum-computing-noise-google-ibm-microsoft/

https://ar5iv.labs.arxiv.org/html/1808.03266
https://learning.quantum.ibm.com/course/variational-algorithm-design/ansatze-and-variational-forms
https://learning.quantum.ibm.com/course/variational-algorithm-design/ansatze-and-variational-forms
https://docs.google.com/document/d/1w7GQ7qSDchPt0YiqkvZE7YQmTk9r0XO-/edit?usp=drive_web&ouid=104716854945157424942&rtpof=true&usp=embed_facebook
https://docs.google.com/document/d/1w7GQ7qSDchPt0YiqkvZE7YQmTk9r0XO-/edit?usp=drive_web&ouid=104716854945157424942&rtpof=true&usp=embed_facebook
https://docs.google.com/document/d/1w7GQ7qSDchPt0YiqkvZE7YQmTk9r0XO-/edit?usp=drive_web&ouid=104716854945157424942&rtpof=true&usp=embed_facebook
https://learning.quantum.ibm.com/course/practical-introduction-to-quantum-safe-cryptography/cryptographic-hash-functions
https://learning.quantum.ibm.com/course/practical-introduction-to-quantum-safe-cryptography/cryptographic-hash-functions
https://learning.quantum.ibm.com/course/practical-introduction-to-quantum-safe-cryptography/cryptographic-hash-functions
https://doi.org/10.36227/techrxiv.170259160.05374043/v2
https://doi.org/10.1109/TNNLS.2022.3151127
https://www.mustythoughts.com/variational-quantum-eigensolver-explained
https://www.mustythoughts.com/variational-quantum-eigensolver-explained
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://www.technologyreview.com/2024/01/04/1084783/quantum-computing-noise-google-ibm-microsoft/
https://www.technologyreview.com/2024/01/04/1084783/quantum-computing-noise-google-ibm-microsoft/

[14]

[15]

[16]

[17]

[18]

[19]

“Quantum-Safe Cryptography And the Quantum Threat.”
Accessed: Mar. 10, 2024. [Online]. Available:

https://www.ssh.com/academy/cryptography/what-is-quan

L. Chen et al., “Report on Post-Quantum Cryptography,”
National Institute of Standards and Technology, NIST IR
8105, Apr. 2016. doi: 10.6028/NIST.IR.8105.
Z.-X. Shang, M.-C. Chen, X. Yuan, C.-Y. Lu, and J.-W.
Pan, “Schrodinger-Heisenberg Variational Quantum
Algorithms,” Phys. Rev. Lett., vol. 131, no. 6, p. 060406,
Aug. 2023, doi: 10.1103/PhysRevLett.131.060406.
“textbook/notebooks/ch-applications at main -
Qiskit/textbook,” GitHub. Accessed: Mar. 09, 2024.
[Online]. Available:
https://github.com/Qiskit/textbook/tree/main/notebooks/c
h-apolicati
H. Xie and L. Yang, “Using Bernstein—Vazirani algorithm
to attack block ciphers,” Des. Codes Cryptogr., vol. 87,
no. 5, pp. 1161-1182, May 2019, doi:
10.1007/s10623-018-0510-5.
“Variational algorithm design | IBM Quantum Learning.”
Accessed: Mar. 09, 2024. [Online]. Available:
https://learning.quantum.ibm.com/course/variational-algo
{(hm-desi

[20]

(21]

[22]

(23]

[24]

[25]

M. Cerezo et al., “Variational Quantum Algorithms,” Nat
Rev Phys, vol. 3, no. 9, pp. 625-644, Aug. 2021, doi:
10.1038/s42254-021-00348-9.

Q. C. G. Roorkee IIT, “Variational Quantum Algorithms,”
Medium. Accessed: Mar. 09, 2024. [Online]. Available:
https://medium.com litr/variational-quantum-algori
hms-66367053a2f3

1. Griol-Barres, S. Milla, A. Cebrian, Y. Mansoori, and J.
Millet, “Variational Quantum Circuits for Machine
Learning. An Application for the Detection of Weak
Signals,” Applied Sciences, vol. 11, no. 14, Art. no. 14,
Jan. 2021, doi: 10.3390/app11146427.

“Variational quantum eigensolver | IBM Quantum
Learning.” Accessed: Mar. 09, 2024. [Online]. Available:
https://learning.quantum.ibm.com/tutorial/variational-qua
D. A. Fedorov, B. Peng, N. Govind, and Y. Alexeev,
“VQE method: a short survey and recent developments,”
Materials Theory, vol. 6, no. 1, p. 2, Jan. 2022, doi:
10.1186/s41313-021- 2-6.

“What are quantum algorithms? | Q-CTRL.” Accessed:
Mar. 09, 2024. [Online]. Available:

https://g-ctrl.com/topics/what-are-quantum-algorithms

https://www.ssh.com/academy/cryptography/what-is-quantum-safe-cryptography
https://www.ssh.com/academy/cryptography/what-is-quantum-safe-cryptography
https://doi.org/10.6028/NIST.IR.8105
https://doi.org/10.1103/PhysRevLett.131.060406
https://github.com/Qiskit/textbook/tree/main/notebooks/ch-applications
https://github.com/Qiskit/textbook/tree/main/notebooks/ch-applications
https://doi.org/10.1007/s10623-018-0510-5
https://learning.quantum.ibm.com/course/variational-algorithm-design
https://learning.quantum.ibm.com/course/variational-algorithm-design
https://doi.org/10.1038/s42254-021-00348-9
https://medium.com/@qcgiitr/variational-quantum-algorithms-66367053a2f3
https://medium.com/@qcgiitr/variational-quantum-algorithms-66367053a2f3
https://doi.org/10.3390/app11146427
https://learning.quantum.ibm.com/tutorial/variational-quantum-eigensolver
https://learning.quantum.ibm.com/tutorial/variational-quantum-eigensolver
https://doi.org/10.1186/s41313-021-00032-6
https://q-ctrl.com/topics/what-are-quantum-algorithms

