Applying Bernstein-Vazirani Algorithm to
Cryptography

Maria Harrison
CS 8395-53: Advanced Quantum Computing
Vanderbilt University
Nashville, TN, USA

Abstract—The purpose of this paper is to explore the
Bernstein-Vazirani algorithm, and gain a better understanding
of its application in cryptography.

Keywords—oracle, quantum states, hidden shift, speed up,
key encryption.

1. INTRODUCTION

In 1992, Ethan Bernstein and Umesh Vazirani developed
the Bernstein-Vazirani algorithm to solve a hidden shift
problem. This algorithm has numerous applications in
cryptography, error correction, and optimization problems.
The goal of this problem was to find a hidden shift.

II. BACKGROUND

The intention of the Bernstein-Vazirani algorithm is to
utilize quantum mechanics's superposition and entanglement
properties to efficiently determine an unknown string. This
algorithm identifies a hidden binary string in one single run.
In comparison to classical algorithms, this provides
significant speed up times. The Bernstein-Vazirani algorithm
provides a quantum algorithm with linear speedup in the
amount of queries relative to the best classical algorithm.

A. Hidden Shift Problem

The hidden shift problem, also known as the
Bernstein-Vazirani problem, states that when given a
function there is a guarantee an undetermined shift exists;
An unknown bit string exists. The function is guaranteed to
be of type a - x and when given an input, the output will
always be of a - x (mod2).

When f is a given function of bit strings and
a is the phase shift
x is a string of n bits
n is the length of said bit string {x o Xy Xy xn}

The algorithm defines a function f(x) to determine the
unknown n-bit string a as followed:
f(x) = a - x(mod2)

B. The Inner-Product Oracle

This algorithm uses a quantum oracle that applies a
given function to a superposition of all possible inputs of a
quantum state. Often referred to as the inner-product oracle,
the quantum oracle is an inner modulus function that
receives queries and applies a single-qubit unitary
transformation. The complexity of the Bernstein-Vazirani
algorithm is in terms of the number of queries to an oracle.

Qs

C. The Quantum Circuit

This algorithm uses n qubits, and outputs each bit of the
hidden string after measurements are made. This process
solves the Berstein-Vazirani problem in one query, rather
than running multiple passes, at minimum of n runs for a
string of length n. This provides significant linear speed up.

111. APPLICATIONS IN CRYPTOGRAPHY

Encryption, in the context of cryptography, is a process
in which plain text or a piece of information is converted
into cipher text that can only be decoded by the receiver for
whom the information is intended. A cryptographic key is a
string of randomized characters, often mathematically
generated, paired with a cryptographic algorithm to secure
data in a message. There are two general categories of
cryptographic keys, symmetric and asymmetric encryption.
There are four encryption algorithms, triple DES, RSA,
Twofish, and AES.

A. Symmetric and Asymmetric Key Encryption

Symmetric key encryption encrypts and decrypts a
message using the same key. While this process is very fast,
it only provides confidentiality. The length of the key used is
either 128 or 256 bits.

Asymmetric key encryption is based on public and
private key encryption techniques; one key is used for
encryption only and the other for decryption. This process is
slower than symmetric, but provides confidentiality,
authenticity, and non-repudiation. The length of the key used
is 2048 bits or larger.

B. Cracking Cryptographic Key Encryptions

Cryptographic keys vary in length, spanning from 128 to
256 bits, to 2046 bits. The runtime of classical algorithms
significantly limits its applications due to its minimum
runtime of n runs, for a string of n length. If a classical
algorithm was used to crack a cryptographic key of a 128 bit
size, the runtime would be a minimum of 128 runs, just to
fully traverse the key in its entirety. Bernstein-Vazirani’s
algorithm is highly applicable to cryptographic key-related
attacks because of its significant speedup compared to
classical algorithms.

IV. EXPLORATION OF BERNSTEIN-V AZIRANI

To further understand Bernstein-Vazirani’s algorithm, I
implemented it using quantum circuits, and used it to guess
a Fernet encryption key. My coding environment consisted
of:

mailto:maria.harrison@vanderbilt.edu

- Visual Studio Code as an IDE

- Python 3.11 language

- QiSkits Numpy, PyenV Python submodules bernstein_vazirani_alg(r, n):
erin

A. Setting Up for a Quantum Circuit

First I generated a random int, in decimal type, whose
binary format would be used as my hidden string. bvCirg.x(n)

Next, I generated a random int between 1, 39 which
represented the number of qubits for my circuit.

Then, I performed a modulus function on my hidden
string, checking to ensure that my randomly generated
integer would be able to be represented with the randomly
generated number of qubits.

bvCirg.hin)

for qubit in re
bvCirg.h{qubit)

bvCirg.barrier()

When f is my inner product oracle function and

r is a randomly generated integer used for my hidden
string

n_qubits is a randomly generated integer for the number
of qubits my circuit will use

secret num is the inner product from a modulus
function bvCirg.barrier()
The hidden string, number of qubits for my quantum circuit
is as followed:

bvCirg.id(qrlil)

getRandomNumbe rHigh() :

al format:", decimal_num)
, bin(decimal_num).replace("ab", ""})

randint(1, 39)
1 number of qub

irn bvCirg

return n_qub
’ 0.0s q0o — H —"_—“_ﬂ
01 — H b— 1 P H
r = getRandomMumberHigh(} o~ } —ﬂ
n_qubits = getRandomNumberQubits() q0; — H T)—— H
0.0s 40 ——u
Random number HIGH generated in decimal format: 864 q04 — H T)—— H
Random number in BINARY format: 1101100000
Random number of qubits: 12 905 il i‘__ &
o, J8 i
40, o
secret_num = r %2#k(n_gubits) 05 - P ~
o —1- @
o 8 i
. q010 - H 1 ’—'— H n
B. Creating Bernstein-Vazirani Algorithm o I - =
When bernstein vazirani_alg(r, n) is the algorithm q0r: I
and o 4o ¥ o b s b b b b Be b
7 is the hidden string in decimal format
n is the number of qubits for the quantum circuit
! ! C. Creating Quantum Simulator and Executing a Circuit

qr is a quantum register of sizen + 1
cr is a classical register of size n
bvCirq is a QuantumCircuit

. x is the output x gate

. h is the output h gate

if (f &1 << i)):is the inner product oracle simulator = Aer.get_backend('qa

shots = 108

Next I created a quantum simulator and executed my
newly created quantum circuit, implemented with
Bernstein-Vazirani’s Algorithm.

Running

result = execute(qCirc, backend=simulator, shots=shots).result()

The newly created quantum circuit implementing
Bernstein-Vazirani’s algorithm is as followed:

plot_histogram(result.get_counts(qCirc))

D. Measuring and Testing Algorithm

Next I measured and tested my algorithm, and compared
the hidden string with the algorithm’s guess to determine

accuracy.

guess = list(result.get_counts().keys())
print(guess)

’ 0.0s

['@81101100000 "]

isGuessCorrect(secret_num, guess):

print(
isGuessCorrect(secret_num, guess)

printOutputAndScore(r, guess, secret_num)
0.0s
Random number generated at the beginning and converted to secret string : 864
Secret string: B64
Guess: ['0811011@0000']
Yay, the guess was CORRECT!

V. APPLYING BERNSTEIN-VAZIRANI TO GUESS A FERNET
ENcryprTION KEY

To further explore the application of Bernstein-Vazirani
in cracking cryptographic keys, I simulated a very
elementary level encryption message program.

A. Setting Up

To best replicate and demonstrate the difficulty and
randomness of key encryption algorithms, I opted to create a
completely random message using a random sentence
generator. [utilized Python’s Wonderword module to
generate 4 complete sentences at random, with the criteria of
a noun, verb, adjective, and direct object. I chose a random
sentence generator to create my message because I wanted
to test my algorithm to determine if it could succinctly
behave with messages of varying length, which would result
in encryption keys of different sizes.

B. Encrypting a Random Message

Next, I encrypted my randomly generated message
using Fernet and then continued the process of decoding the
encryption key to use as my hidden string in the algorithm.

", fernet)

Fernet key encrypted:

b'n1QbDGIxjXLzv50d6XZEiANONICrIAqBhPbNgYLe3ys="

import binascii

print(“En

print(fernet)

print("\n")

b64_ascii = fernet.decode(
64

primt{"\n")

b64_binary = bina
print(“Co k of
print(b64_binary)
print("\n")

cii.a2b_base64({b64_ascii)

= Binary A

print(”] y of bi
bits = ''.join(format(byte,
print(bits)
primt{"\n")

converted
print(converted)
print("\n")
print(” umber of ints from ¢
converted.sort()

print{converted)

The following is the output of the encryption key after it
has been decoded and converted into the proper format for
my circuit. I opted to convert the final key from Base64 32
bytes to a byte array, and then transformed it into a list of
integers. This was the best option for me to be able to
randomly select an item from the list to be the hidden string
for my algorithm.

C. Creating a Simulator and Running Circuit
Next, I created a quantum simulator and executed my
algorithm, using a random part of my decoded Fernet
encryption key to serve as the hidden string. I really wanted
to emphasize the randomness of the hidden string to
demonstrate this algorithm’s application capacity and
runtime, hence why I opted to randomize a subset of my

decoded encryption key.

getRandNumFernet{converted):
ndom. chaice(converted)
om. randint{3, 39)

print("R
return rf, ngb

rf, ngb = getRandNumFernet{converted)
if (rfs2 (ngb))z

in(rf).replace("p
e:
print(rf%2 #* (ngb))
0.0s

Random number from Fernet Base64 key in decimal format: B84
Random number in BINARY format: 1810108

Random number of qubits: 15

PASS

D. Measuring and Testing Algorithm
Measuring and testing my algorithm follows the same
steps in section IV, part D. The results can be seen as
follows:

printQutputAndScore(rf, format(fernet_guess), rf_secret)

0.0s

Random number generated at the beginning and converted to secret string : 84
Secret string: 1018188

Guess: ['008000001010100']

Yay, the guess was CORRECT!

Lastly, after the algorithm finished running, I encoding
the guessed string from the algorithm back into the original
data encoding and format. I did this to demonstrate the
capacity of applying Bernstein-Vazirani’s algorithm in
cryptography.

fernet_guess = list(fernet_result.get_counts().keys())
print(format(fernet_guess))

0.0s

['eeeeneee1810100']

convertBackToBase64(guess) :
print("“Fe ss in Binary")

print(bytes_bits)
print{"\n")

0.0s

convertBackToBase64(fernet_guess)

0.0s

Fernet Guess in Binary
['ee0000001010100 "]

Converting Guess of binary bits -> decimal]
84

VI. CONCLUDING REMARKS

Bernstein-Vazirani’s Algorithm poses significant benefits
when applied to cryptography. In my example application in
this study, I demonstrated the algorithm’s ability to identify
two independent, randomly created hidden strings. Using a

random binary string from a decimal integer as a hidden
string was meant to help understand and build the
foundations of the Bernstein-Vazirani algorithm. A random
binary string, from a subset of a decoded Fernet encryption
key demonstrated the capacity of applying this algorithm to
crack other encryption keys, such as RSA. The algorithm
exploits quantum circuits and querying an oracle, thus
surpassing classical algorithms in its runtime alone. The use
of querying an inner product oracle poses significant
advantages as the algorithm is not required to run n times, in
which n is the length of the hidden string. Creating a small
scale cryptographic key application in this study barely
scrapes the iceberg of cryptography, but provides insight to
just one of the applications of the Bernstein-Vazirani
algorithm.

VIL Works CITED

(1]

A. Shukla and P. Vedula, “A generalization of
Bernstein—Vazirani algorithm with multiple secret keys and
a probabilistic oracle,” Quantum Inf Process, vol. 22, no. 6,
p. 244, Jun. 2023, doi: 10.1007/s11128-023-03978-3.

[2]

K. Nagata, G. Resconi, T. Nakamura, J. Batle, S. Abdalla,
and A. Farouk, “A Generalization of the Bernstein-Vazirani
Algorithm,” MOJ Ecology & Environmental Science, vol. 2,
p. 00010, Mar. 2017, doi: 10.15406/mojes.2017.02.00010.
(3]

A. R. Khan, B. Rizwan, and F. Hassan, ‘“Bernstein-Vazirani
Algorithm”.

[4]

“QasmBackendConfiguration,” IBM Quantum
Documentation. [Online]. Available:
https://docs.quantum.ibm.com/api/giskit/qgiskit.providers.mo
dels.QasmBackendConfiguration

[5]

B.-M. Zhou and Z. Yuan, “Quantum key-recovery attack on
Feistel constructions: Bernstein—Vazirani meet Grover
algorithm,” Quantum Inf Process, vol. 20, no. 10, p. 330,
Sep. 2021, doi: 10.1007/s11128-021-03256-0.

[6]

H. Xie and L. Yang, “Using Bernstein-Vazirani Algorithm to
Attack Block Ciphers.” arXiv, Jul. 16, 2018. [Online].
Available: http://arxiv.org/abs/1711.00853

[7]

“Wonderwords Official Documentation — Wonderwords
documentation.” [Online]. Available:

https://wonderwords.readthedocs.io/en/latest/

https://doi.org/10.1007/s11128-023-03978-3
https://doi.org/10.15406/mojes.2017.02.00010
https://docs.quantum.ibm.com/api/qiskit/qiskit.providers.models.QasmBackendConfiguration
https://docs.quantum.ibm.com/api/qiskit/qiskit.providers.models.QasmBackendConfiguration
https://doi.org/10.1007/s11128-021-03256-0
http://arxiv.org/abs/1711.00853
https://wonderwords.readthedocs.io/en/latest/

