
Applying Bernstein-Vazirani Algorithm to
Cryptography

Maria Harrison
CS 8395-53: Advanced Quantum Computing

Vanderbilt University
Nashville, TN, USA

maria.harrison@vanderbilt.edu

Abstract—The purpose of this paper is to explore the
Bernstein-Vazirani algorithm, and gain a better understanding
of its application in cryptography.

Keywords—oracle, quantum states, hidden shift, speed up,
key encryption.

I. INTRODUCTION
In 1992, Ethan Bernstein and Umesh Vazirani developed

the Bernstein-Vazirani algorithm to solve a hidden shift
problem. This algorithm has numerous applications in
cryptography, error correction, and optimization problems.
The goal of this problem was to find a hidden shift.

II. BACKGROUND

The intention of the Bernstein-Vazirani algorithm is to
utilize quantum mechanics's superposition and entanglement
properties to efficiently determine an unknown string. This
algorithm identifies a hidden binary string in one single run.
In comparison to classical algorithms, this provides
significant speed up times. The Bernstein-Vazirani algorithm
provides a quantum algorithm with linear speedup in the
amount of queries relative to the best classical algorithm.

A. Hidden Shift Problem
The hidden shift problem, also known as the

Bernstein-Vazirani problem, states that when given a
function there is a guarantee an undetermined shift exists;
An unknown bit string exists. The function is guaranteed to
be of type and when given an input, the output will𝑎 · 𝑥
always be of .𝑎 · 𝑥 (𝑚𝑜𝑑2)

When is a given function of bit strings and𝑓
is the phase shift𝑎
is a string of bits𝑥 𝑛
is the length of said bit string𝑛 {𝑥

0
, 𝑥

1
, 𝑥

2
, ..., 𝑥

𝑛
}

The algorithm defines a function to determine the𝑓(𝑥)
unknown n-bit string as followed:𝑎
𝑓(𝑥) = 𝑎 · 𝑥 (𝑚𝑜𝑑2)

B. The Inner-Product Oracle
This algorithm uses a quantum oracle that applies a

given function to a superposition of all possible inputs of a
quantum state. Often referred to as the inner-product oracle,
the quantum oracle is an inner modulus function that
receives queries and applies a single-qubit unitary
transformation. The complexity of the Bernstein-Vazirani
algorithm is in terms of the number of queries to an oracle.

C. The Quantum Circuit
This algorithm uses qubits, and outputs each bit of the𝑛

hidden string after measurements are made. This process
solves the Berstein-Vazirani problem in one query, rather
than running multiple passes, at minimum of runs for a𝑛
string of length . This provides significant linear speed up.𝑛

III. APPLICATIONS IN CRYPTOGRAPHY

Encryption, in the context of cryptography, is a process
in which plain text or a piece of information is converted
into cipher text that can only be decoded by the receiver for
whom the information is intended. A cryptographic key is a
string of randomized characters, often mathematically
generated, paired with a cryptographic algorithm to secure
data in a message. There are two general categories of
cryptographic keys, symmetric and asymmetric encryption.
There are four encryption algorithms, triple DES, RSA,
Twofish, and AES.

A. Symmetric and Asymmetric Key Encryption
Symmetric key encryption encrypts and decrypts a

message using the same key. While this process is very fast,
it only provides confidentiality. The length of the key used is
either 128 or 256 bits.

Asymmetric key encryption is based on public and
private key encryption techniques; one key is used for
encryption only and the other for decryption. This process is
slower than symmetric, but provides confidentiality,
authenticity, and non-repudiation. The length of the key used
is 2048 bits or larger.

B. Cracking Cryptographic Key Encryptions
Cryptographic keys vary in length, spanning from 128 to

256 bits, to 2046 bits. The runtime of classical algorithms
significantly limits its applications due to its minimum
runtime of runs, for a string of length. If a classical𝑛 𝑛
algorithm was used to crack a cryptographic key of a 128 bit
size, the runtime would be a minimum of 128 runs, just to
fully traverse the key in its entirety. Bernstein-Vazirani’s
algorithm is highly applicable to cryptographic key-related
attacks because of its significant speedup compared to
classical algorithms.

IV. EXPLORATION OF BERNSTEIN-VAZIRANI

To further understand Bernstein-Vazirani’s algorithm, I
implemented it using quantum circuits, and used it to guess
a Fernet encryption key. My coding environment consisted
of:

mailto:maria.harrison@vanderbilt.edu

- Visual Studio Code as an IDE
- Python 3.11 language
- Qiskit, Numpy, Pyenv Python submodules

A. Setting Up for a Quantum Circuit
First I generated a random int, in decimal type, whose

binary format would be used as my hidden string.
Next, I generated a random int between 1, 39 which

represented the number of qubits for my circuit.
Then, I performed a modulus function on my hidden

string, checking to ensure that my randomly generated
integer would be able to be represented with the randomly
generated number of qubits.

When is my inner product oracle function and𝑓
is a randomly generated integer used for my hidden𝑟

string
_ is a randomly generated integer for the number𝑛 𝑞𝑢𝑏𝑖𝑡𝑠

of qubits my circuit will use
_ is the inner product from a modulus𝑠𝑒𝑐𝑟𝑒𝑡 𝑛𝑢𝑚

function
The hidden string, number of qubits for my quantum circuit
is as followed:

B. Creating Bernstein-Vazirani Algorithm
When _ _ is the algorithm𝑏𝑒𝑟𝑛𝑠𝑡𝑒𝑖𝑛 𝑣𝑎𝑧𝑖𝑟𝑎𝑛𝑖 𝑎𝑙𝑔(𝑟, 𝑛)

and
is the hidden string in decimal format𝑟
is the number of qubits for the quantum circuit𝑛
is a quantum register of size𝑞𝑟 𝑛 + 1
is a classical register of size𝑐𝑟 𝑛

is a QuantumCircuit𝑏𝑣𝐶𝑖𝑟𝑞
is the output. 𝑥 𝑥 𝑔𝑎𝑡𝑒
is the output. ℎ ℎ 𝑔𝑎𝑡𝑒

is the inner product oracle𝑖𝑓 (𝑓 & 1 << 𝑖)):

The newly created quantum circuit implementing
Bernstein-Vazirani’s algorithm is as followed:

C. Creating Quantum Simulator and Executing a Circuit
Next I created a quantum simulator and executed my

newly created quantum circuit, implemented with
Bernstein-Vazirani’s Algorithm.

D. Measuring and Testing Algorithm
Next I measured and tested my algorithm, and compared

the hidden string with the algorithm’s guess to determine

accuracy.

V. APPLYING BERNSTEIN-VAZIRANI TO GUESS A FERNET
ENCRYPTION KEY

To further explore the application of Bernstein-Vazirani
in cracking cryptographic keys, I simulated a very
elementary level encryption message program.

A. Setting Up
To best replicate and demonstrate the difficulty and

randomness of key encryption algorithms, I opted to create a
completely random message using a random sentence
generator. I utilized Python’s Wonderword module to
generate 4 complete sentences at random, with the criteria of
a noun, verb, adjective, and direct object. I chose a random
sentence generator to create my message because I wanted
to test my algorithm to determine if it could succinctly
behave with messages of varying length, which would result
in encryption keys of different sizes.

B. Encrypting a Random Message
Next, I encrypted my randomly generated message

using Fernet and then continued the process of decoding the
encryption key to use as my hidden string in the algorithm.

The following is the output of the encryption key after it
has been decoded and converted into the proper format for
my circuit. I opted to convert the final key from Base64 32
bytes to a byte array, and then transformed it into a list of
integers. This was the best option for me to be able to
randomly select an item from the list to be the hidden string
for my algorithm.

C. Creating a Simulator and Running Circuit
Next, I created a quantum simulator and executed my

algorithm, using a random part of my decoded Fernet
encryption key to serve as the hidden string. I really wanted
to emphasize the randomness of the hidden string to
demonstrate this algorithm’s application capacity and
runtime, hence why I opted to randomize a subset of my

decoded encryption key.

D. Measuring and Testing Algorithm
Measuring and testing my algorithm follows the same

steps in section IV, part D. The results can be seen as
follows:

Lastly, after the algorithm finished running, I encoding
the guessed string from the algorithm back into the original
data encoding and format. I did this to demonstrate the
capacity of applying Bernstein-Vazirani’s algorithm in
cryptography.

VI. CONCLUDING REMARKS

Bernstein-Vazirani’s Algorithm poses significant benefits
when applied to cryptography. In my example application in
this study, I demonstrated the algorithm’s ability to identify
two independent, randomly created hidden strings. Using a

random binary string from a decimal integer as a hidden
string was meant to help understand and build the
foundations of the Bernstein-Vazirani algorithm. A random
binary string, from a subset of a decoded Fernet encryption
key demonstrated the capacity of applying this algorithm to
crack other encryption keys, such as RSA. The algorithm
exploits quantum circuits and querying an oracle, thus
surpassing classical algorithms in its runtime alone. The use
of querying an inner product oracle poses significant
advantages as the algorithm is not required to run times, in𝑛
which is the length of the hidden string. Creating a small𝑛
scale cryptographic key application in this study barely
scrapes the iceberg of cryptography, but provides insight to
just one of the applications of the Bernstein-Vazirani
algorithm.

VII. WORKS CITED

[1]
A. Shukla and P. Vedula, “A generalization of
Bernstein–Vazirani algorithm with multiple secret keys and
a probabilistic oracle,” Quantum Inf Process, vol. 22, no. 6,
p. 244, Jun. 2023, doi: 10.1007/s11128-023-03978-3.
[2]
K. Nagata, G. Resconi, T. Nakamura, J. Batle, S. Abdalla,
and A. Farouk, “A Generalization of the Bernstein-Vazirani
Algorithm,” MOJ Ecology & Environmental Science, vol. 2,
p. 00010, Mar. 2017, doi: 10.15406/mojes.2017.02.00010.
[3]
A. R. Khan, B. Rizwan, and F. Hassan, “Bernstein-Vazirani
Algorithm”.
[4]
“QasmBackendConfiguration,” IBM Quantum
Documentation. [Online]. Available:
https://docs.quantum.ibm.com/api/qiskit/qiskit.providers.mo
dels.QasmBackendConfiguration
[5]
B.-M. Zhou and Z. Yuan, “Quantum key-recovery attack on
Feistel constructions: Bernstein–Vazirani meet Grover
algorithm,” Quantum Inf Process, vol. 20, no. 10, p. 330,
Sep. 2021, doi: 10.1007/s11128-021-03256-0.
[6]
H. Xie and L. Yang, “Using Bernstein-Vazirani Algorithm to
Attack Block Ciphers.” arXiv, Jul. 16, 2018. [Online].
Available: http://arxiv.org/abs/1711.00853
[7]
“Wonderwords Official Documentation —Wonderwords
documentation.” [Online]. Available:
https://wonderwords.readthedocs.io/en/latest/

https://doi.org/10.1007/s11128-023-03978-3
https://doi.org/10.15406/mojes.2017.02.00010
https://docs.quantum.ibm.com/api/qiskit/qiskit.providers.models.QasmBackendConfiguration
https://docs.quantum.ibm.com/api/qiskit/qiskit.providers.models.QasmBackendConfiguration
https://doi.org/10.1007/s11128-021-03256-0
http://arxiv.org/abs/1711.00853
https://wonderwords.readthedocs.io/en/latest/

